Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621909

RESUMO

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Assuntos
Isquemia Encefálica , Panax notoginseng , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Saponinas , Triterpenos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Fator de von Willebrand , 60489 , Farmacologia em Rede , Ratos Sprague-Dawley , Saponinas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral
3.
Front Psychiatry ; 15: 1323527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510807

RESUMO

Background: Bipolar disorder (BD) is a complex and serious psychiatric condition primarily characterized by bipolar depression, with the underlying genetic determinants yet to be elucidated. There is a substantial body of literature linking psychiatric disorders, including BD, to oxidative stress (OS). Consequently, this study aims to assess the relationship between BD and OS by identifying key hub genes implicated in OS pathways. Methods: We acquired gene microarray data from GSE5392 through the Gene Expression Omnibus (GEO). Our approach encompassed differential expression analysis, weighted gene co-expression network analysis (WGCNA), and Protein-Protein Interaction (PPI) Network analysis to pinpoint hub genes associated with BD. Subsequently, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to identify hub genes relevant to OS. To evaluate the diagnostic accuracy of these hub genes, we performed receiver operating characteristic curve (ROC) analysis on both GSE5388 and GSE5389 datasets. Furthermore, we conducted a study involving ten BD patients and ten healthy controls (HCs) who met the special criteria, assessing the expression levels of these hub genes in their peripheral blood mononuclear cells (PBMCs). Results: We identified 411 down-regulated genes and 69 up-regulated genes for further scrutiny. Through WGCNA, we obtained 22 co-expression modules, with the sienna3 module displaying the strongest association with BD. By integrating differential analysis with genes linked to OS, we identified 44 common genes. Subsequent PPI Network and WGCNA analyses confirmed three hub genes as potential biomarkers for BD. Functional enrichment pathway analysis revealed their involvement in neuronal signal transduction, oxidative phosphorylation, and metabolic obstacle pathways. Using the Cytoscape plugin "ClueGo assay," we determined that a majority of these targets regulate neuronal synaptic plasticity. ROC curve analysis underscored the excellent diagnostic value of these three hub genes. Quantitative reverse transcription-PCR (RT-qPCR) results indicated significant changes in the expression of these hub genes in the PBMCs of BD patients compared to HCs. Conclusion: We identified three hub genes (TAC1, MAP2K1, and MAP2K4) in BD associated with OS, potentially influencing the diagnosis and treatment of BD. Based on the GEO database, our study provides novel insights into the relationship between BD and OS, offering promising therapeutic targets.

4.
Mol Neurobiol ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368288

RESUMO

This work aimed to investigate the role of atractylenolide I (ATR) in resisting depression and its mechanism of action. The mouse model of depression was constructed through chronic unpredictable mild stress (CUMS) method. After ATR intervention, changes in the depression-related behaviors of mice were detected through open field test and elevated plus maze. In addition, enzyme-linked immunosorbent assay (ELISA) was conducted to detect inflammatory factor levels. Real-time fluorescence quantitative PCR (RT-qPCR) was performed to measure the mRNA levels of A1/A2 astrocyte markers. Furthermore, primary astrocytes were induced in vitro, and the A1 differentiation level was detected by ELISA and RT-qPCR assays. ATR improved the behaviors of CUMS mice and alleviated the depression symptoms. Moreover, it reduced tissue inflammation, inhibited the A1 differentiation of astrocytes, and decreased the mRNA levels of A1 markers. After NLRP3 knockout, the effects of ATR were suppressed. Similarly, in vitro experimental results also revealed that ATR suppressed the A1 differentiation of astrocytes. Based on molecular dynamics and small molecule-protein docking results, ATR mainly targeted NLRP3 and suppressed the NLRP3-mediated A1 differentiation. We discover that ATR can target NLRP3 to suppress A1 differentiation of astrocytes, restrain tissue inflammation, and improve the depression symptoms in mice.

5.
Clin Neurophysiol ; 160: 121-129, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38422970

RESUMO

OBJECTIVE: To investigate the association between subclinical seizures detected on intracranial electroencephalographic (i-SCSs)recordings and mesial temporal sclerosis (MTS), as well as their impact on surgical outcomes of stereotactic laser amygdalohippocampotomy (SLAH). METHODS: A retrospective review was conducted on 27 patients with drug-resistant mesial temporal lobe epilepsy (MTLE) who underwent SLAH. The number of seizures detected on scalp EEG and iEEG was assessed. Patients were followed for a minimum of 3 years after SLAH. RESULTS: Of the 1715 seizures recorded from mesial temporal regions, 1640 were identified as i-SCSs. Patients with MTS were associated with favorable short- and long-term surgical outcomes. Patients with MTS had a higher number of i-SCSs compared to patients without MTS. The numbers of i-SCSs were higher in patients with Engel I-II outcomes, but no significant statistical difference was found. However, it was observed that patients with MTS who achieved Engel I-II classification had higher numbers of i-SCSs than patients without MTS (P < 0.05). CONCLUSION: Patients with MTS exhibited favorable short-term and long-term surgical outcome after SLAH. A higher number of i-SCSs was significantly associated with MTS in patients with MTLE. The number of i-SCSs tended to be higher in patients with Engel Ⅰ-Ⅱ surgical outcomes. SIGNIFICANCE: The association between i-SCSs, MTS, and surgical outcomes in MTLE patients undergoing SLAH has significant implications for understanding the underlying mechanisms and identifying potential therapeutic targets to enhance surgical outcomes.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Resultado do Tratamento , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Lasers
6.
Acta Radiol ; 65(2): 185-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115683

RESUMO

BACKGROUND: It has been reported that patients with early breast cancer with 1-2 positive sentinel lymph nodes have a lower risk of non-sentinel lymph node (NSLN) metastasis and cannot benefit from axillary lymph node dissection. PURPOSE: To develop the potential of machine learning based on multiparametric magnetic resonance imaging (MRI) and clinical factors for predicting the risk of NSLN metastasis in breast cancer. MATERIAL AND METHODS: This retrospective study included 144 patients with 1-2 positive sentinel lymph node breast cancer. Multiparametric MRI morphologic findings and the detailed demographical characteristics of the primary tumor and axillary lymph node were extracted. The logistic regression, support vector classification, extreme gradient boosting, and random forest algorithm models were established to predict the risk of NSLN metastasis. The prediction efficiency of a machine-learning-based model was evaluated. Finally, the relative importance of each input variable was analyzed for the best model. RESULTS: Of the 144 patients, 80 (55.6%) developed NSLN metastasis. A total of 24 imaging features and 14 clinicopathological features were analyzed. The extreme gradient boosting algorithm had the strongest prediction efficiency with an area under curve of 0.881 and 0.781 in the training set and test set, respectively. Five main factors for the metastasis of NSLN were found, including histological grade, cortical thickness, fatty hilum, short axis of lymph node, and age. CONCLUSION: The machine-learning model incorporating multiparametric MRI features and clinical factors can predict NSLN metastasis with high accuracy for breast cancer and provide predictive information for clinical protocol.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética Multiparamétrica , Linfonodo Sentinela , Humanos , Feminino , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Metástase Linfática/patologia , Neoplasias da Mama/patologia , Biópsia de Linfonodo Sentinela/métodos , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Excisão de Linfonodo/métodos
7.
Plants (Basel) ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140457

RESUMO

Oxalis triangularis 'Purpurea' has significant ornamental value in landscaping. There is a critical necessity to elucidate the gene functions of O. triangularis 'Purpurea' and dissect the molecular mechanisms governing key ornamental traits. However, a reliable genetic transformation method remains elusive. In this study, our investigation revealed that various transformation parameters, including recipient material (petioles), pre-culture time (2-5 days), acetosyringone (AS) concentration (100-400 µM), Agrobacterium concentrations (OD600 = 0.4-1.0), infection time (5-20 min), and co-culture time (2-5 days), significantly impacted the stable genetic transformation in O. triangular 'Purpurea'. Notably, the highest genetic transformation rate was achieved from the leaf discs pre-cultured for 3 days, treated with 200 µM AS infected with Agrobacterium for 11 min at OD600 of 0.6, and subsequently co-cultured for 3 days. This treatment resulted in a genetic transformation efficiency of 9.88%, and it only took 79 days to produce transgenic plants. Our transformation protocol offers advantages of speed, efficiency, and simplicity, which will greatly facilitate genetic transformation for O. triangular 'Purpurea' and gene function studies.

8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 954-958, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37866952

RESUMO

Objective: YKL-40, also known as chitinase-3-like-1 (CHI3L1), is a human cartilage glycoprotein-39, with its N-terminus consisting of tyrosine (Y), lysine (K), and leucine (L), hence the name YKL-40. In this study, we explored whether YKL-40 could promote the expression of inflammatory factors in type Ⅱ alveolar epithelial cells. Methods: A549 cells were cultured in vitro with interleukin (IL)-1ß (20 ng/mL), IL-6 (20 ng/mL), tumor necrosis factor-alpha (TNF-α) (20 ng/mL), and interferon-gamma (IFN-γ) (20 ng/mL). The expression of YKL-40 transcription was determined by RT-qPCR. A549 cells were cultured with IL-1ß at 5, 10, and 20 ng/mL and the expression of YKL-40 protein was determined by Western blot. A549 cells were cultured with recombinant YKL-40 protein at 0, 100, 500, and 1 000 ng/mL and the expression levels of IL-6 and IL-8 were measured by RT-qPCR. Three pairs of small interfering RNAs targeting YKL-40 (si- YKL-40-1/2/3) and the negative control (NC) were designed and used to transfect A549 cells, respectively, and the expression of YKL-40 was determined by RT-qPCR and Western blot. si- YKL-40-3 was screened out for subsequent experiments. In A549 cells, si- YKL-40-3 and si-NC were transfected and, then, IL-1ß (20 ng/mL) was added in for culturing. The expression of YKL-40, IL-6, and IL-8 was determined by RT-qPCR and the expression of multiple factors in the supernatant was measured with the QAH-INF-1 kit. Results: RT-qPCR results showed that IL-1ß could up-regulate YKL-40 protein transcription level compared with that of the control group and the difference was statistically significant ( P<0.01), but IL-6, TNF-α, and IFN-γ could not up-regulate YKL-40 protein transcription level. Western blot results showed that IL-1ß (20 ng/mL) could significantly promote the expression of YKL-40 and, compared with that of the control group, the differences showed by groups treated with different concentrations of IL-1ß were all statistical significant ( P<0.01). After adding human recombinant YKL-40 protein to A549 cells, the results showed that the expression of inflammatory factors IL-6 and IL-8 was significantly increased and the difference was statistically significant compared with that of the control group ( P<0.05). After the expression of YKL-40 was decreased by si- YKL-40-3 transfection, the expression of IL-6 ( P<0.05), IL-8 ( P<0.05), and other inflammatory factors was inhibited compared with that of the control group. Conclusion: YKL-40 can promote the expression and secretion of IL-6, IL-8, and other acute inflammatory factors in A549 cell line, a type Ⅱ alveolar epithelial cell model, thus aggravating the inflammatory response. Targeted inhibition of YKL-40 expression may effectively inhibit inflammatory response.


Assuntos
Células Epiteliais Alveolares , Fator de Necrose Tumoral alfa , Humanos , Células Epiteliais Alveolares/metabolismo , Células A549 , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Interferon gama
9.
Aging (Albany NY) ; 15(20): 11546-11553, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37889523

RESUMO

AIM: We investigated the effect and mechanism of Icariin (ICA) on improving neurobehavioral ability of mice with Alzheimer's disease (AD). METHODS: We selected 10-month-old APP/PS1 mice (AD) and wild-type C57BL/6J mice (Normal). After intragastric administration of ICA, Morris water maze was employed to detect neurobehavioral improvements, and to assay key ferroptosis indicators and oxidative stress levels. The common target of ICA for resisting ferroptosis and AD was predicted by network pharmacology. RESULTS: ICA could improve the neurobehavioral, memory and motor abilities of AD mice. It could lower the ferroptosis level and enhance the resistance to oxidative stress. After inhibition of MDM2, ICA could no longer improve the cognitive ability of AD mice, nor could it further inhibit ferroptosis. Network pharmacological analysis revealed that MDM2 might be the target of ICA action. CONCLUSIONS: We found that ICA can inhibit ferroptosis of nerve cells, thereby ameliorating neural damage in mice with AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ferroptose , Camundongos , Animais , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Neurônios/metabolismo
10.
Cell Death Dis ; 14(10): 670, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821439

RESUMO

Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Processamento Alternativo/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Splicing de RNA , Carcinogênese/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
11.
PeerJ ; 11: e16056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744244

RESUMO

Background: Gardenia jasminoides is a species of Chinese medicinal plant, which has high medicinal and economic value and rich genetic diversity, but the study on its genetic diversity is far not enough. Methods: In this study, one wild and one cultivated gardenia materials were resequenced using IlluminaHiSeq sequencing platform and the data were evaluated to understand the genomic characteristics of G. jasminoides. Results: After data analysis, the results showed that clean data of 11.77G, Q30 reached 90.96%. The average comparison rate between the sample and reference genome was 96.08%, the average coverage depth was 15X, and the genome coverage was 85.93%. The SNPs of FD and YP1 were identified, and 3,087,176 and 3,241,416 SNPs were developed, respectively. In addition, SNP non-synonymous mutation, InDel mutation, SV mutation and CNV mutation were also detected between the sample and the reference genome, and KEGG, GO and COG database annotations were made for genes with DNA level variation. The structural gene variation in the biosynthetic pathway of crocin and gardenia, the main medicinal substance of G. jasminoides was further explored, which provided basic data for molecular breeding and genetic diversity of G. jasminoides in the future.


Assuntos
Carotenoides , Gardenia , Plantas Medicinais , Análise de Sequência de DNA , Gardenia/genética , Gardenia/metabolismo , Genômica , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , China , Carotenoides/metabolismo , Variação Genética/genética
12.
Cancer Med ; 12(17): 18078-18097, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563971

RESUMO

BACKGROUND: Ubiquitin-conjugating enzyme E2S (UBE2S), an E2 enzyme, is associated with the development of various tumors and exerts oncogenic activities. UBE2S is overexpressed in tumors, including hepatocellular carcinoma (HCC). However, the key molecular mechanisms of UBE2S in HCC still need additional research. The aim of this study was to explore the role of UBE2S in HCC. METHODS: The expression levels of UBE2S in HCC tissues and cells were detected by western blot analysis, quantitative real-time polymerase chain reaction analysis (qRT-PCR), and immunohistochemistry (IHC). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, colony formation assay transwell assay, and animal models were used to detect the proliferation and migration ability of HCC cells. Western blot analysis, qRT-PCR, immunofluorescence, small-interfering RNA (siRNA), and plasmid transfection and coimmunoprecipitation (Co-IP) assays were performed to detect the interaction among UBE2S, von Hippel-Lindau (VHL), hypoxia-inducible factor 1-alpha (HIF-1α), Janus kinase-2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). RESULTS: In this study, we found that high UBE2S expression was associated with poor prognosis in HCC patients. In addition, UBE2S expression was upregulated in HCC tissues and cell lines. Knockdown of UBE2S inhibited the proliferation and migration of HCC cells in vitro and in vivo by directly interacting with VHL to downregulate the HIF-1α and JAK2/STAT3 signaling pathways. Accordingly, overexpression of UBE2S significantly enhanced the proliferation and migration of HCC cells in vitro via VHL to upregulate HIF-1α and JAK2/STAT3 signaling pathways. Furthermore, we found that downregulation of UBE2S expression enhanced the sensitivity of HCC cells to sorafenib in vivo and in vitro. CONCLUSION: UBE2S enhances malignant properties via the VHL/HIF-1α and VHL/JAK2/STAT3 signaling pathways and reduces sensitivity to sorafenib in HCC. The findings of this study may open a new approach for HCC diagnosis and provide a potential option for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
13.
Handb Clin Neurol ; 196: 295-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37620075

RESUMO

Motor semiology is a major component of epilepsy evaluation, which provides essential information on seizure classification and helps in seizure localization. The typical motor seizures include tonic, clonic, tonic-clonic, myoclonic, atonic, epileptic spasms, automatisms, and hyperkinetic seizures. Compared to the "positive" motor signs, negative motor phenomena, for example, atonic seizures and Todd's paralysis are also crucial in seizure analysis. Several motor signs, for example, version, unilateral dystonia, figure 4 sign, M2e sign, and asymmetric clonic ending, are commonly observed and have significant clinical value in seizure localization. The purpose of this chapter is to review the localization value and pathophysiology associated with the well-defined motor seizure semiology using updated knowledge from intracranial electroencephalographic recordings, particularly stereoelectroencephalography.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Convulsões/diagnóstico , Eletrocorticografia , Conhecimento
14.
Mol Biol Rep ; 50(8): 6851-6861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392282

RESUMO

BACKGROUND: Gardenia jasminoides Ellis is a perennial evergreen shrub of G. jasminoides of Rubiaceae. Geniposide and Crocin are important components in the fruit of G. jasminoides. In addition to being used as medicinal materials, they are also widely used in food, medicine, cosmetics, and other fields. They have high medicinal value, economic value, and ornamental value. However, at present, the utilization rate of G. jasminoides resources is low, mainly focused on germplasm cultivation, primary processing, and clinical pharmacology, and there are few studies on the quality of Gardenia fruit. METHODS AND RESULTS: Based on transcriptome sequencing and metabolic group analysis, the morphological and structural changes of Gardenia fruit with young fruit, middle fruit, and ripe fruit were analyzed, and the formation mechanism and content changes of Geniposide and Crocin in Gardenia fruit were studied. The content of Geniposide decreased with the development of fruit, so did the expression of the main structural gene GES, G10H, and IS in its synthesis pathway, while the content of Crocin increased with the development of fruit, and the expression of the main structural gene CCD, ALDH, and UGT in its synthesis pathway also increased. The relationship between the morphological structure of G. jasminoides and the accumulation of Geniposide and Crocin was summarized. CONCLUSIONS: This study not only provides a theoretical basis for the mining and utilization of Geniposide and Crocin, but also provides a theoretical basis for genetic background for the identification and cloning of bioactive substances in gardenia fruit in future. At the same time, it provides support for increasing the dual-use value of G. jasminoides and breeding excellent germplasm resources.


Assuntos
Gardenia , Gardenia/química , Frutas/genética , Frutas/química , Transcriptoma/genética , Melhoramento Vegetal , Iridoides/farmacologia , Iridoides/química , Metaboloma
15.
Gen Physiol Biophys ; 42(4): 339-347, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449318

RESUMO

Crohn's disease (CD) is a segmental chronic inflammatory bowel disease, which seriously affects the patient's quality of life. The etiology of CD is not yet clear, and there is still a lack of effective treatments. Therefore, in this study, we focus on developing a useful model for early diagnosis and targeted therapy of CD. The expression datasets of CD were collected to filter differentially expressed genes (DEGs) by overlapping "limma" package and "WGCNA" package. Then, functional enrichment analysis and protein-protein interaction (PPI) network analyses were performed. Hub genes were screened with "cytoHubba" plug-in and filtered with LASSO and stepwise regression analyses. The logistic regression model and nomogram were established based on the selected hub genes. The 45 DEGs were identified and the top 30 hub genes were chosen out for further study. Finally, 11 genes were selected to construct the logistic regression model and nomogram. The receiver operating characteristic (ROC) curve shows that the area under the curve (AUC) value was 0.960 in the training dataset and 0.760 in the validation dataset. A 11-gene diagnostic model was constructed with IL1B, CXCL10, CXCL2, LCN2, MMP12, CXCL9, NOS2, GBP5, FPR1, GBP4 and WARS, which may become potential biomarkers for early diagnosis and targeted therapy of CD.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Qualidade de Vida , Marcadores Genéticos , Mapas de Interação de Proteínas/genética , Biomarcadores
16.
Hematology ; 28(1): 2235833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37462338

RESUMO

OBJECTIVE: The prognosis of acute myeloid leukemia (AML) remains poor although the basic and translational research has been highly productive in understanding the genetics and pathopoiesis of AML and a plethora of targeted therapies have been developed. Consequently, it is crucial to deepen the knowledge of molecular pathogenesis underlying AML for the advancement of new treatment options. METHOD: A RSK gene family-related signature was constructed to investigate whether RSK gene family members were useful in predicting the prognosis of AML patients. The relationship between the RSK gene family-related signature and the infiltration of immune cells was further assessed using the CIBERSORT algorithm. The 'oncoPredict' package was used to analyze relationships between the RSK gene family-related signature and the sensitivity to drugs or small molecules. RESULTS: Patients were classified into two groups using the RSK gene family-related signature following the median risk score. Overall survival (OS) was significantly longer in patients with low-risk scores than that in patients with high-risk scores as showed by both training and validation datasets. Moreover, the signature was helpful in predicting 1-year, 3-year, and 5-year OS in training and validation datasets. In addition, it was identified that low-risk patients exhibited greater sensitivity to 20 drugs or small molecules and that high-risk patients had higher sensitivity to 38 drugs or small molecules. CONCLUSION: RSK gene family members, particularly RPS6KA1 and RPS6KA4, may help to predict prognosis for AML patients. Furthermore, RPS6KA1 may serve as a novel drug target for AML.


Assuntos
Família , Leucemia Mieloide Aguda , Proteínas Quinases S6 Ribossômicas , Humanos , Algoritmos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , Proteínas Quinases S6 Ribossômicas/genética
17.
Int J Biol Macromol ; 247: 125815, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37451382

RESUMO

AIM: We isolated a novel polypeptide PNP1 from velvet antler and investigated the role of PNP1 in ischemia reperfusion and its associated mechanism. METHODS: We built the ischemia reperfusion mouse model by the middle cerebral artery occlusion (MCAO) approach. Thereafter, PNP-1 was injected via the tail vein, and neurological function was scored. Meanwhile, the tissue injury level was detected through hematoxylin & eosin (HE) and immunohistochemical (IHC) staining, inflammatory factor levels were determined with enzyme-linked immunosorbent assay (ELISA), while protein levels through Western blotting. In addition, vascular endothelial cells were used to construct the oxygen-glucose deprivation (OGD) injury model in vitro, so as to detect the intervention effect of PNP1 on endothelial injury. Additionally, microglial cells were utilized to construct the inflammatory injury model to examine the impact of PNP1 on the polarization of microglial cells. RESULTS: PNP1 suppressed hypoxic cerebral injury in MCAO mice, decreased the tissue inflammatory factors, promoted tissue angiogenesis, and reduced the ischemic penumbra area. Experimental results in vitro demonstrated that, PNP1 suppressed vascular endothelial cell injury, and inhibited microglial M1 polarization as well as inflammatory response. CONCLUSION: Velvet antler polypeptide PNP1 isolated in this study has the anti-ischemic cerebral injury effect, and its mechanism is associated with suppressing vascular endothelial cell injury and microglial cell inflammatory response.


Assuntos
Chifres de Veado , Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Isquemia Encefálica/complicações , Chifres de Veado/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/metabolismo
18.
J Biochem Mol Toxicol ; 37(12): e23483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37503908

RESUMO

This study aimed to investigate the role and mechanism of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in liver fibrosis. The liver Kupffer cells (KCs) and mononuclear macrophages (J774A.1) were used as the objects of study to induce M1 polarization with LPS/IFN-γ. After TWEAK intervention, the M1 cell proportion and marker cytokine levels were detected. Thereafter, CD266 expression was silenced, and NLRP3 expression was inhibited by the NLRP3 inhibitor, so as to investigate the impact of TWEAK on M1 polarization of KCs. In addition, the mouse model of liver fibrosis was constructed to observe the influence of TWEAK on mouse liver fibrosis. According to our results, TWEAK promoted M1 polarization of liver KCs and J774A.1 cells, and silencing CD266 expression or treatment with the NLRP3 inhibitor suppressed the effect of TWEAK. In the mouse experiment, it was discovered that after knocking down NLRP3 expression or using NLRP3 inhibitor to antagonize the effect of TWEAK, the mouse liver function and M1 cell level in liver tissues were improved.


Assuntos
Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Necrose Tumoral/metabolismo
19.
Cell Death Dis ; 14(6): 381, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380646

RESUMO

Cancer stem cells (CSCs) contribute to tumor initiation, progression, and recurrence in many types of cancer, including hepatocellular carcinoma (HCC). Epigenetic reprogramming of CSCs has emerged as a promising strategy for inducing the transition from malignancy to benignity. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is required for DNA methylation inheritance. Here, we investigated the role and mechanism of UHRF1 in regulating CSC properties and evaluated the impact of UHRF1 targeting on HCC. Hepatocyte-specific Uhrf1 knockout (Uhrf1HKO) strongly suppressed tumor initiation and CSC self-renewal in both diethylnitrosamine (DEN)/CCl4-induced and Myc-transgenic HCC mouse models. Ablation of UHRF1 in human HCC cell lines yielded consistent phenotypes. Integrated RNA-seq and whole genome bisulfite sequencing revealed widespread hypomethylation induced by UHRF1 silencing epigenetically reprogrammed cancer cells toward differentiation and tumor suppression. Mechanistically, UHRF1 deficiency upregulated CEBPA and subsequently inhibited GLI1 and Hedgehog signaling. Administration of hinokitiol, a potential UHRF1 inhibitor, significantly reduced tumor growth and CSC phenotypes in mice with Myc-driven HCC. Of pathophysiological significance, the expression levels of UHRF1, GLI1, and key axis proteins consistently increased in the livers of mice and patients with HCC. These findings highlight the regulatory mechanism of UHRF1 in liver CSCs and have important implications for the development of therapeutic strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Hedgehog , Carcinoma Hepatocelular/genética , Proteína GLI1 em Dedos de Zinco , Neoplasias Hepáticas/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Células-Tronco Neoplásicas , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitina-Proteína Ligases/genética
20.
Stereotact Funct Neurosurg ; 101(3): 195-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37232010

RESUMO

INTRODUCTION: Stimulation of the thalamus is gaining favor in the treatment of medically refractory multifocal and generalized epilepsy. Implanted brain stimulators capable of recording ambulatory local field potentials (LFPs) have recently been introduced, but there is little information to guide their use in thalamic stimulation for epilepsy. This study sought to assess the feasibility of chronically recording ambulatory interictal LFP from the thalamus in patients with epilepsy. METHODS: In this pilot study, ambulatory LFP was recorded from patients who underwent sensing-enabled deep brain stimulation (DBS, 2 participants) or responsive neurostimulation (RNS, 3 participants) targeting the anterior nucleus of the thalamus (ANT, 2 electrodes), centromedian nucleus (CM, 7 electrodes), or medial pulvinar (PuM, 1 electrode) for multifocal or generalized epilepsy. Time-domain and frequency-domain LFP was investigated for epileptiform discharges, spectral peaks, circadian variation, and peri-ictal patterns. RESULTS: Thalamic interictal discharges were visible on ambulatory recordings from both DBS and RNS. At-home interictal frequency-domain data could be extracted from both devices. Spectral peaks were noted at 10-15 Hz in CM, 6-11 Hz in ANT, and 19-24 Hz in PuM but varied in prominence and were not visible in all electrodes. In CM, 10-15 Hz power exhibited circadian variation and was attenuated by eye opening. CONCLUSION: Chronic ambulatory recording of thalamic LFP is feasible. Common spectral peaks can be observed but vary between electrodes and across neural states. DBS and RNS devices provide a wealth of complementary data that have the potential to better inform thalamic stimulation for epilepsy.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Generalizada , Tálamo , Humanos , Epilepsia Resistente a Medicamentos/terapia , Epilepsia/terapia , Epilepsia Generalizada/terapia , Estudos de Viabilidade , Núcleos Intralaminares do Tálamo , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...